Электро́н (от др.-греч. ἤλεκτρον — янтарь) — стабильная, отрицательно заряженная элементарная частица, одна из основных структурных единиц вещества (хотя по ряду современных предположений и теорий может быть разделена на другие субатомные частицы). Является фермионом (то есть имеет полуцелый спин). Относится к лептонам (единственная стабильная частица среди заряженных лептонов, до тех пор пока обратное не доказано экспериментально). Из электронов состоят электронные оболочки атомов. Большинство химических свойств атома определяется строением внешних электронных оболочек. Движение свободных электронов обусловливает такие явления, как электрический ток в проводниках и вакууме. Заряд электрона неделим и равен −1,602176565(35)•10−19 Кл (или −4,80320427(13)•10−10 ед. заряда СГСЭ в системе СГСЭ или −1,602176565(35)•10−20ед. СГСМ в системе СГСМ); он был впервые непосредственно измерен в экспериментах А. Ф. Иоффе (1911) и Р. Милликена (1912). Эта величина служит единицей измерения электрического заряда других элементарных частиц (в отличие от заряда электрона, элементарный заряд обычно берётся с положительным знаком). Масса электрона равна 9,10938291(40)•10−31 кг. кг — масса электрона. Кл — заряд электрона. Кл/кг — удельный заряд электрона. — спин электрона в единицах Согласно современным представлениям физики элементарных частиц, электрон неделим и бесструктурен (как минимум до расстояний 10−17 см). Электрон участвует в слабом, электромагнитном и гравитационном взаимодействиях. Он принадлежит к группе лептонов и является (вместе со своей античастицей, позитроном) легчайшим из заряженных лептонов. До открытия массы нейтрино электрон считался наиболее лёгкой из массивных частиц — его масса примерно в 1836 раз меньше массы протона. Спин электрона равен 1⁄2, и, таким образом, электрон относится к фермионам. Как и любая заряженная частица со спином, электрон обладает магнитным моментом, причем магнитный момент делится на нормальную часть и аномальный магнитный момент. Иногда к электронам относят как собственно электроны, так и позитроны (например, рассматривая их как общее электрон-позитронное поле, решение уравнения Дирака), особенно в тех задачах, когда их общие свойства более существенны, чем различия. При таком выборе терминов отрицательно заряженный электрон называют негатроном, положительно заряженный — позитроном. Находясь в периодическом потенциале кристалла, электрон рассматривается как квазичастица, эффективная масса которой может значительно отличаться от массы электрона. Свободный электрон не может поглотить фотон, хотя и может рассеять его. Название «электрон» происходит от греческого слова ἤλεκτρον, означающего «янтарь»: ещё в древней Греции естествоиспытателями проводились эксперименты — куски янтаря тёрли шерстью, после чего те начинали притягивать к себе мелкие предметы. Термин «электрон» как название фундаментальной неделимой единицы заряда в электрохимии был предложен Дж. Дж. Стоуни в 1894 (сама единица была введена им в 1874). Открытие электрона как частицы принадлежит Э. Вихерту и Дж. Дж. Томсону, который в 1897 установил, что отношение заряда к массе для катодных лучей не зависит от материала источника. Открытие волновых свойств. Согласно гипотезе де Бройля (1924), электрон (как и все другие материальные микрообъекты) обладает не только корпускулярными, но и волновыми свойствами. Де-бройлевская длина волны нерелятивистского электрона равна, где — скорость движения электрона. В соответствии с этим электроны, подобно свету, могут испытывать интерференцию и дифракцию. Волновые свойства электронов были экспериментально обнаружены в 1927 американскими физиками К. Дэвиссоном и Л. Джермером (Опыт Дэвиссона — Джермера) и независимо английским физиком Дж. П. Томсоном. Эксперименты с трубкой Крукса впервые продемонстрировали природу электронов В большинстве источников низкоэнергетичных электронов используются явления термоэлектронной эмиссии ифотоэлектронной эмиссии. Высокоэнергетичные, с энергией от нескольких кэВ до нескольких МэВ, электроны излучаются в процессах бета-распада и внутренней конверсии радиоактивных ядер. Электроны, излучаемые в бета-распаде, иногда называют бета-частицами или бета-лучами. Источниками электронов с более высокой энергией служат ускорители. Движение электронов в металлах и полупроводниках позволяет легко переносить энергию и управлять ею. Это явление (электрический ток) является одной из основ современной цивилизации и используется практически повсеместно в промышленности, связи, информатике, электронике, в быту. Скорость дрейфа электронов в проводниках крайне мала (~0,1—1 мм/с), однако электрическое поле распространяется со скоростью света. В связи с этим ток во всей цепи устанавливается практически мгновенно. Пучки электронов, ускоренные до больших энергий, например, в линейных ускорителях, являются одним из основных средств изучения строения атомных ядер и природы элементарных частиц. Более прозаическим применением электронных лучей являются телевизоры имониторы с электронно-лучевыми трубками (ЭЛТ) — кинескопами. Электронный микроскоп также использует способность электронных пучков подчиняться законам электронной оптики. До изобретения транзисторов практически вся радиотехника и электроника были основаны на вакуумных электронных лампах, где применяется управление движением электронов в вакууме электрическими (иногда и магнитными) полями. Электровакуумные приборы (ЭВП)продолжают ограниченно использоваться и в наше время. Наиболее распространённые применения — магнетроны в генераторах микроволновых печей и вышеупомянутые электронно-лучевые трубки в телевизорах и мониторах. Если электрон находится в периодическом потенциале, его движение рассматривается как движение квазичастицы. Его состояния описываются квазиволновым вектором. Основной динамической характеристикой в случае квадратичного закона дисперсии является эффективная масса, которая может значительно отличаться от массы свободного электрона и в общем случае является тензором. Известно, что из каждых 100 нуклонов во Вселенной, 87 являются протонами и 13 — нейтронами (последние в основном входят в состав ядер гелия). Для обеспечения общей нейтральности вещества число протонов и электронов должно быть одинаково. Плотность барионной (наблюдаемой оптическими методами) массы, которая состоит в основном из нуклонов, достаточно хорошо известна (один нуклон на 0,4 кубического метра). С учётом радиуса наблюдаемой Вселенной (13,7 млрд световых лет) можно подсчитать, что число электронов в этом объёме составляет ~1080, что сопоставимо с большими числами Дирака. Орбиталь — в многоэлектронной системе — одноэлектронная волновая функция. Для описания атомных и молекулярных многоэлектронных систем вместо точного решения уравнения Шрёдингера приходится обращаться к тем или иным приближениям, одним из которых является одноэлектронное или (другое название) — орбитальное. В его основе лежит представление о существовании индивидуальных состояний каждого электрона, которые представляют собой стационарные состояния движения электрона в некотором эффективном поле, создаваемом ядром (или ядрами) и всеми остальными электронами. Эти стационарные состояния описываются соответствующими одноэлектронными функциями.
Источник: http://www.podelkin.net/ |